If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-144x-6=0
a = 8; b = -144; c = -6;
Δ = b2-4ac
Δ = -1442-4·8·(-6)
Δ = 20928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20928}=\sqrt{64*327}=\sqrt{64}*\sqrt{327}=8\sqrt{327}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-8\sqrt{327}}{2*8}=\frac{144-8\sqrt{327}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+8\sqrt{327}}{2*8}=\frac{144+8\sqrt{327}}{16} $
| -7(12x-6)=-360 | | -9(-8x+2)=-7 | | 7-7m-3=2m-1 | | -1-17d-17=-5(12d-18)-11d | | -2(-7m+2)=-13+14m | | 9(9d+12)=6(15d+18)-9d | | 5x+15=4x+1 | | 2n+18=-17n+19n+11 | | 4.5f=6.3f-4.5 | | 8s+10=-2(-4s-5) | | -1-4q=7-15q+12q | | 4(3p+2)=13p+3 | | 4(3p+2=13p+3 | | (x-1)+6x=4(3x-1)+2 | | -20v+20=-14v-20-4v | | (x+10)/3=20 | | -8z=8(-z-13) | | -2w-7-6w=-5-8w | | 18t+6=9(-4t-18)+6t | | 5g-20=20+2g-1 | | d+9+17d=18d+9 | | 736+(f-123)=938 | | -13+9m=-11m-5(-4m+6) | | 4(-3+2y)-5y=-3 | | 4x-5(x+2)=7x+12-8x | | 20+8v+20=-20-12v | | -17+13c=20+17c+19 | | -5q+7=-7-3q | | -8z+8=-8z-3 | | 8+4y=4y-4 | | -6p=p+7 | | -4d=-4d+3 |